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Abstract—A private cloud deployment of an infrastructure
as a service (IaaS) cluster is a cost effective solution to many
small and intermediate digital libraries and maybe companies.
As a working online digital library search engine, the physical
infrastructure of CiteSeerX represents many of the clusters for
a typical digital library in terms of size and functionalities.
CiteSeerX used to run on a cluster consisting of eighteen loosely
coupled physical machines. In this work we share the experiences
and lessons learned through migrating CiteSeerX into a private
cloud environment using virtualization technique. We also discuss
alternative solutions including a public cloud deployment using
Amazon EC2 and EBS services. We found that the private cloud
via virtualization is a better model for a digital library system like
CiteSeerX. We also report system status, activities and proposed
variations after the new system has been running for over half
a year.

I. INTRODUCTION

Cloud computing has emerged as an attractive paradigm for
both personal and large scale computational and service based
projects. It features elastic resource allocation and on-demand
scalability without a huge upfront investment. Successful and
most popular large cloud services include Amazon EC2 and
Google App Engine. Cloud computing can be generally catego-
rized into three service models [1], i.e., Software as a Service
(SaaS), Platform as a Service (PaaS) and Infrastructure as a
Service (IaaS) with several deployment models, i.e., public,
private, hybrid (public+private) and virtual private (offered by
Amazon Web Services).

As cloud computing gains more popularity, there has been
active research in the past years on this topic. For example,
an auction-based approach was proposed by Zhang et al. [2]
to schedule computational resources interactively in a cloud
service. There have also been attempts to migrate existing
systems into the cloud infrastructure. For instance, Teregowda
& Giles discussed the feasibility of moving the extraction
system of the CiteSeerX digital library into Amazon EC2
cloud [3]. Chauhan & Barbar reported the lessons learned from
migrating a service-oriented system to a cloud environment [4].

Cloud computing has many advantages which attract indi-
vidual users, companies and enterprises to move their existing
systems into it. The first is elasticity. For example, Amazon
EC2 charges users on a cost per use bases, so individual
users can “shutdown” their virtual machines when they are
offline with no (or little) additional charge. The second is
relatively low cost. For instance, [5] did a case study and
concluded that the cost of hosting a source code repository
using Amazon EC2/S3 was lower than hosting it locally. The

third is the on-demand self-service. Most of time, a consumer
can avail computing resources in an automated fashion without
resorting to human interactions. Finally, using cloud services
can save tremendous amount of time on system maintenance.
Most public cloud services are off-premise and maintained by
profesional IT. Users are not responsible for handling hardware
failure, storage and cooling issues.

To our knowledge, most of research work was focused
on the big public cloud services such as Amazon EC2, e.g.,
[6], [7]. There is a lack of publications giving principles and
practical guidance on migrating small or medium size server
clusters into a private cloud.

CiteSeerX is a digital library search engine which provides
free access to over three million academic documents crawled
from the public web. CiteSeerX used to run on a cluster of
18 loosely coupled physical servers. This is a typical size for
many small or medium size service-oriented clusters in digital
libraries or other related projects. Most nodes in this cluster
were already running for many years (5–6) which is a property
of many research systems. We had experienced occasional hard
drive or controller failures, which caused permanent loss of
data, delay of research progress and even downtime for online
services. In addition, as CiteSeerX scales up, the existing
storage and computational resources have become bottlenecks
to sustain the system growth. Instead of moving each server
to an individual new machine, migrating the system to a
cloud infrastructure is a promising solution for both system
maintainability and scalability.

The major contribution of this work is two-fold. On one
hand, we rationalize the feasibility to move the system to the
private cloud and list challenges during the migration project.
These challenges can be common when moving any peer
digital library into a cloud. On the other hand, we provide
suggestions and lessons learned through the migration steps.
These suggestions and lessons can be helpful for IT managers
to evaluate the difficulty of their projects and decide better
approaches when migrating a real system like ours.

This paper is organized as follows. In Section II, we give
an introduction to the frontend and backend of the CiteSeerX
digital library and describe its properties which are common
for small and medium size digital libraries. In Section III, we
rationalize the decision to choose a private cloud as a solution
instead of a public cloud or a simple hardware replacement.
In Section IV, we first list the challenges we were facing and
how we tackled them in the context of detailed migration
steps. We then describe several post-migration issues that
we experienced, which inspired us on improving the system
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Fig. 1. The architecture of the CiteSeerX system and their main jobs. Arrows
indicate data flow directions. Red dashed lines enclose the frontend; blue
dashed lines enclose the backend.

design. We have a brief discussion on possible alternatives
and variations of architecture in Section V and conclude in
Section VI.

II. CITESEERX AS A DIGITAL LIBRARY

As a typical digital library, CiteSeerX includes the follow-
ing components. The frontend contains a web search interface,
a database, an index and a large repository; the backend plays
roles of information acquisition (focused crawling), metadata
extraction, filtering and ingestion.

From the users’ perspective, CiteSeerX provides over 3
million (after migration, updated in September, 2013) down-
loadable academic papers in PDF or postscript formats from
which over 2.2 million are unique (after clustering similar
documents). There are over 15 million unique records (doc-
uments+citations). As most of scholarly search engines as
Google Scholar, the users can perform full text searches by
querying keywords in a search box. A user is also allowed
to create a personal account and add favorite papers into
his/her personal collection. The paper summary page con-
tains metadata extracted from the original papers including
titles, authors, abstracts and citations. CiteSeerX offers a
user-correction feature, in which registered users can make
corrections to metadata errors. CiteSeerX also designs special
interfaces for author and table searches. Most of authors are
disambiguated using techniques described in [8], which results
in over 300,000 unique disambiguated authors. In addition
to submitting queries from the search box, users may also
obtain direct links by searching general search engines such
as Google or Bing. Users are also encouraged to submit URLs
of crawlable PDF files to get them indexed.

From the developers/administrators’ perspective, the archi-
tecture of CiteSeerX is presented in Fig. 1. At the backend,
the crawler downloads PDF files and stores them in the crawl
repository. The documents are passed to the text extraction
server through an API. The text content of these documents
is parsed and filtered so that only documents classified as
academic are kept. The ingestion system, which runs on the
repository server, imports the retained documents into the
master production repository and writes the metadata into the
database. Documents are clustered and new documents are
indexed by Solr. At the frontend, the online requests (queries
or direct links) access through a load balancer. The traffic is
redirected to one of the web servers. The repository is mounted
to one of the web servers via a global network block device

TABLE I. PHYSICAL PRODUCTION SERVERS.

Alias #cores Memory Storage Functionality
Web (x2) 4@1.0GHz 16GB 240GB Web server
LB (x2) 2@1.0GHz 2GB 80GB Load Balancer
DB-M 24@2.7GH 48GB 1.5TB Master database
DB-R 8@2.0GHz 16GB 1.3TB Replication database
Rep-P 4@2.0GHz 16GB 13TB Production repository
Rep-B 8@2.0GHz 32GB 15TB Backup repository
Index-P 4@1.0GHz 16GB 240GB Paper index

Index-AT1 4@1.0GHz 16GB 100GB Table and author indices
Ext-P 2@2.4GHz 32GB 1.5TB Primary text extraction
Ext-A1 2@1.0GHz 3.5GB 1.4TB Auxiliary extraction
Crawl1 8@2.8GHz 32GB 15TB Crawler

Crawl Web1 4@1.0GHz 8GB 62GB Crawler web/API
Crawl DB1 8@2.8GHz 32GB 394GB Crawler database
Staging1 8@2.0GHz 16GB 7TB Feature testing
DOI1 2@1.0GHz 2GB 80GB DOI server
Static1 2@1.0GHz 3.5GB 80GB Static web2

1 Note included in Fig. 1.
2 Static web pages like team information is hosted separately.

(GNBD). Searching results are returned by the index server.
Documents can be downloaded from the repository server. All
metadata are retrieved from the database server.

This architecture used to be implemented by 18 physical
production servers listed in Table I. From the descriptions
above, we can see that CiteSeerX represents a digital library
with the following properties.

a) Medium Size: CiteSeerX repository contains about
2.6 million documents (before migration and hereafter), which
takes about 4 tera-bytes of disk space. The database is 130GB
(on disk before dump) and the Solr index is 70GB (after
optimization). This is a medium size compared to large aca-
demic search engines such as Google Scholar and Microsoft
Academic Search (about 50 million according to Wikipedia) al-
though these giant repositories include a fraction of metadata-
only papers without free full-text. As we will note later, the
relatively large (and growing) repository makes it challenging
to replicate and backup.

b) Steadily Growing: CiteSeerX steadily increases its
collection size by crawling the web. At least 2,000 new
documents are ingested daily, with the associated citations.
With revised crawling policies and new hardware, we expect
to reach at least 10,000 new documents daily, which is at least
3 million a year. In addition, one web server is generating
on average 500MB access logs every day. These require the
system to be scalable.

c) Loosely Coupled Components: The repository, in-
dex, database and crawler are hosted on separate servers. Data
are pulled or pushed by RESTful or other types of APIs.
Backend servers mostly run batch jobs and do not need to
work as a closely bonded cluster. This allows certain servers
detached without affecting the functionality of other servers.
For example, the crawler repository can be unmounted from
the extraction server which only stops text extraction but
ingestion can continue (from extraction server to the master
repository). At the frontend, if only the database server is
offline the search function is still available through the index
server. This gives us more flexibility to move less dependent
units one at a time and makes it easy for testing and error
tracking.
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d) Sub-Mission Critical: Although CiteSeerX has an
average traffic of 2 million hits per day (including spiders),
it is different from a commercial server, e.g., a game server,
which allows (almost) zero downtime. In those cases, an in-
memory state migration should be considered to minimize the
downtime to sub-second [9]. Empirically, a downtime of a few
minutes to a few hours was acceptable. We can temporarily
disable user registration and error correction features without
complaints, which gives us less constraints to synchronize data.

e) Small Maintenance Team: CiteSeerX has a small
maintenance team of 3–5 people, which is typical for a digital
library in a research institute. Most of them are graduate stu-
dents that cannot dedicate on this project. With limited funding
and flow of human resources, an long-term economical system
design is required to reduce operational cost. In addition, a
good documentation is essential to minimize learning time for
new people.

f) High Data Throughput: CiteSeerX has an average
traffic of 2 million hits per day and an average downloading
rate of at least 10 per second [10]. This yields an average
outbound data transfer rate of up to 25TB per month. In
addition, the ingestion rate is about 2,000 per day which turns
up to 4GB to the repository, database and index.

The properties of such a digital library as CiteSeerX imply
both degrees of freedom and constraints when performing
any major upgrade. As the system components get aged,
multiple issues emerged, such as hardware failures, scalability
bottlenecks, computing resource deficiency, and increase of
maintenance time. All of these factors motivate us to upgrade
the system to keep it sustainable. We discuss three possible
choices in the next section.

III. RATIONALE

A. System Requirements

We had three choices to upgrade our system.

1) Replace old machines.
2) Move the system to Amazon EC2.
3) Move the system to a private cloud using virtualization.

Whichever choice we make, the new hardware must have
sufficient resources for computing and storage. Specially, the
storage should be scalable/extendible to hold the data so that
no major upgrade is necessary for at least 2 years. We rationale
the changes of each server below:

Load Balancers Because the load balancer only distributes
the requests but do not actually process them, a light weighted
server is sufficient.

Web Servers These are the servers where CiteSeerX is de-
ployed and actually processes incoming requests. The physical
web server only has 240GB and is not sufficient to store fast
increasing log files (500MB/day). Therefore, we allocate 1TB
space to it so that it can hold logs up to 4–5 years.

Database Servers The size of the dumped database file is
65GB and it takes about 130GB of space after being imported
into the MySQL server. The disk storages for database servers
are then set to 400GB, which can always be extended when
needed.

TABLE II. BASELINE COMPUTING RESOURCES OF NEW SERVERS.

Alias #cores Memory Storage
Web (x2) 4@2.5GHz 16GB 1TB
LB (x2) 2@2.5GHz 4GB 20GB
DB (x2) 8@2.5GHz 16GB 400GB
Rep (x2) 4@2.5GHz 16GB 10TB
Index (x2) 8@2.5GHz 16GB 150GB
Ext (x2) 4@2.5GHz 8GB 4TB
Crawl 4@2.5GHz 32GB 30TB

Crawl Web 2@2.5GHz 8GB 100GB
Crawl DB 4@2.5GHz 32GB 500GB
Staging 8@2.5GHz 16GB 7TB
DOI 1@2.5GHz 2GB 40GB
Static 1@2.5GHz 8GB 40GB
Total 80@2.5GHz 250GB 68.7TB

Repository Servers Repository servers host all the
PDF/postscript documents, therefore disk I/O is the major
bottleneck. We allocate 16GB of memory because about 80%
of memory were used by system to cache frequently used files
in the physical server. Although the CiteSeerX repository size
is about 4TB, it grows at a rate of 2TB annually based on
the current ingestion rate, so 10TB can sustain over two years
before we expand it or go for another solution. Note that the
ingestion also eats some disk space to store temporary files.

Index Servers The current index size is 80GB. Assuming
the index size grows linearly with documents, 150GB should
be sufficient for now. To speed up the indexing speed, we need
at least 4GB for Solr heap memory. Because optimization may
consume more memory, CPU, and disk space. We allocate
16GB of memory and 8 cores to the indexing servers.

Extraction Servers Text extraction is a CPU expensive job.
We tentatively allocate 4 cores and 8GB of memory which
is sufficient for the single threading case. More CPU cores
and memory may be needed for multi-thread processing (Sec-
tion IV-C.2). The 4TB space is allocated to store temporary
files.

Staging Staging machine is a platform where we test new
features before implementing them to production. It is an all-
in-one machine which integrates the functionalities of web,
database, repository, index, and extraction servers. As a result,
we give it sufficient computing resources to hold the current
repository and perform all kinds of experiments. The data on
the staging server do not need to be up-to-date.

We decide to exclude the crawl-related servers from putting
into the cloud. The crawler web server just provides a web
interface to view the crawl progress and serves an API and the
crawler database is not large (10GB). The machines hosting
them were only 2 years old so they should be durable for the
next 2-3 years. The crawl machine requires a huge storage
which can almost occupy all the storage of a server hosting
virtual machines (VMs). If we host other VMs and the crawler
VM on the same physical machine, they have to share the
bandwidth, which may slow down the crawling speed. In
addition, as we show later, the disk I/O on VMs is in general
slower than physical counterparts, which may reduce the crawl
speed. The DOI server and static web servers are both light
weighted. We can host them on the author/table index server,
which does not have a heavy workload.
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TABLE III. PRICE QUOTES FROM DELL.COM.

Server #cores Memory Storage1 Price2
Web (x2) 4@2.4GHz 16GB 1TB $5928
LB (x2) 4@2.4GHz 4GB 250GB $4110
DB (x2) 8@2.4GHz 16GB 500GB $7188
Rep (x2) 6@2.5GHz 16GB 10TB $20536
Index (x2) 8@2.4GHz 8GB 250GB $6526
Ext (x2) 8@2.4GHz 8GB 4TB $11900
Staging 8@2.4GHz 16GB 7TB $8102
Total 84@2.4GHz3 152GB 39TB $64290

1 Disk space after RAID 5.
2 After multiplied by duplicate factor, e.g., x2.
3 Average frequency.

Fig. 2. Three-layer model of the cloud architecture.

Based on the these requirements and the usage history of
CiteSeerX a baseline specifications for each new machine are
tabulated in Table II.

B. Cost Analysis

In this section, we compare the three upgrade models
through a cost analysis based on the current hardware and
public cloud market.

Table III lists the price quotes of rack server PowerEdge
R620 we obtained on Dell.com . We try to match the specifica-
tions in Table II, but certain items may vary. Table III indicates
that the hardware cost of the new system is about $65,000.
Note that we have used all the chassises on the repository
server meaning we cannot expand the storage by adding more
hard drives. Also these hardware is just enough for servers in
Table II. It costs extra money to purchase new servers.

We also quote the prices of moving all or part of the
systems to Amazon EC2 which is a public cloud service. The
migration cost to Amazon EC2 was estimated in [10], but that
cost was only based on moving the existing data. The provision
for future up scaling was not considered, so we re-do the
estimation here. We use the reserved instance model which
gives us the maximum saving. This model requires an upfront
payment but with very low monthly rates. Again, we try to
match the computing resources specified in Table II. To reduce
the cost to the lowest level, we only implement the frontend
production servers and apply a linear grow model to the disk
space requested, i.e., we start from a basic level and increase
the storage monthly based on data growth rates. Table IV
implies that the cost for a 3-year reservation is $177.2k and
for a 1-year reservation is $55.6k. Note that the major part
of the monthly rate is the big repository storage and a high
outbound data transfer rate (document downloads) which is a
common property of digital libraries.

TABLE IV. PRICE QUOTES FOR AMAZON EC2.

Server API name Monthly (3 yrs) Monthly (1 yr)
Web (x2) m2.xlarge 165.44 187.40
LB (x2) m1.medium 121.52 128.84

DB m3.xlarge 117.86 120.78
Rep m3.2xlarge 169.83 196.91
Index m3.xlarge 117.86 120.78
EBS Starting Monthly Monthly

Volume Storage Growth Cost
Rep 5TB 512GB 512+51.2M1

DB 250GB 10GB 25+M
Index 100GB 5GB 10+0.5M

Data Transfer Rate Monthly (3 yrs) Monthly (1 yr)
Data Transfer OUT 10MB/s2 2611.11 2611.11
Data Transfer IN 20GB/day3 0 0
AWS Support 448.23 444.02
Monthly Total Over Year(s) 163.7k 47.6k

One-time Fee Total 13.5k 8.0k
Final Payment to Amazon 177.2k 55.6k

Estimation as done using Amazon Simple Monthly Calculator. Machines
are reserved for 1 or 3 years with Red Hat Enterprise Linux installed on
all servers. All prices are in US dollars.

1 M is the count of months, starting from 0.
2 Assuming an average PDF document size of 1MB. Average downloading
rate is 10 doc/s [10]. Web page access is neglected in this calculation.

3 Assuming an ingestion rate of 10,000 per day (upper limit after migrating
to the new system) and a 2MB of disk space is used per document ingested.

The third choice is to purchase a small number but large
powerful machines to build a private cloud cluster providing
IaaS using virtualization.

The cloud architecture (Fig. 2) is composed of three layers:
the storage layer, followed by a processing layer and finally
an OS/application layer. The storage layer is composed of
two servers whose sole purpose is to act as storage for
virtual machines. The processing layer consists of five pow-
erful servers which are connected to the storage level. The
system/application layer consists of various virtual machines
running on the processing layer while data and the virtual
machine themselves are stored on the storage level. We use
VMware ESXi version 5.1 as the hypervisor which acts like a
status monitor and a coordinator dealing with all interactions
between the storage and the processing layers.

The advantages of this architecture are three fold. First, it
increases the server reliability. If one processing server fails,
the hypervisor can respond and move VMs on that server
to another processing server. For example, moving a VM
containing 4 cores and 4GB memory takes about 85 seconds
and a VM with 8 cores and 16GB memory takes 180 seconds.
The second advantage is a smaller footprint in the datacenter
which equates to less physical space used in racks as well as
a lower operating temperature and thus more efficient use of
power. This allows us to add physical servers to our cluster
should we need more processing power or storage. We then can
move more mission critical VMs to the newly added physical
servers while keeping the old servers for less critical work such
as research or experiments. The third advantage is flexibility
to create and delete a new server. By using a template-based
workflow in a virtualized architecture, setup time has been
reduced from a day, not including the time for a vendor to
deliver a system, to a matter of minutes.

The plan is to purchase five processing servers and two
storage servers. The computing resources and and costs are
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TABLE V. SPECIFICATIONS AND COST OF PRODUCTION SERVERS.

Server Type #cores1 Memory Storage2 Quantity Sub-total
Processing 12 96GB 1TB 5 $35k
Storage 12 32GB 30TB 2 $24k
HW Total 84 640GB 65TB 7 $59k
Other Power3 Network4 License5 Sub-total Total
1-year $4980 $6000 $2111 $8.3k $70k

3-year $14939 $18000 $2843 $21.4k $95k

1 CPU frequency 2.5GHz.
2 After RAID 5 for each unit.
3 Assuming a PUE value of 1.17, including electrical power and cooling.
4 Estimated by assuming 100Mbps.
5 Quoted from vmWare with Standard Basic support.

listed in Table V. Besides the hardware cost, we also consider
electrical power, cooling, bandwidth and hypervisor license.
While a university usually pays the bills for these, they are
not negligible in general to build a data center. The electrical
power is estimated by assuming an upper limit of energy
consumption of 700W for each server and 10 cents per kWh.
The cooling cost depends on the type of cooling methods,
desired temperature and rack postions. A rough estimation
can be made by assuming an average PUE (Power Usage
Effectiveness), which is defined as the total facility power
divided by IT equipment power. This value is about 1.16 for
Google, 1.08 for Yahoo and 1.07 for Facebook. We assume
PUE = 1.16. The bandwidth (network) cost is estimated
by assuming $5 per Mbps per month. In addition, we need
a virtual platform which allows us to build a set of virtual
machines on top of it. We choose VMware vSphere for its
support to Red Hat Linux Enterprise (RHEL), past reviews
and usage experiences [11]. The itemized cost for each item
is listed in Table V.

Comparing the three choices, Choice 3) (private cloud)
is better than 1) (physical) because with a comparable cost
(hardware + license), the private cloud choice provides a lot
more memory and disk space than the physical infrastructure.
Besides, the power consumption is much less by the cloud due
to the reduced number of physical servers. Comparing 3) and
2) (public cloud), although in the short term, the public cloud is
a more economical choice, in the long term (3 years or longer),
the public cloud choice almost doubles the cost of building a
private cloud. This reflects the elastic nature of the Amazon
EC2 service. In short, we choose the private cloud solution
because in the long term, with the lowest cost, it can fit all the
servers demanded and still have plenty of extra resources for
expansion.

IV. MIGRATION TO A PRIVATE CLOUD

A. Challenges

Although virtual platform has been used for university
lab machines and we have been familiar with using cloud
services offered by Amazon EC2, moving such an real online
service, we still face many challenges. These challenges may
be common for other digital libraries and similar projects
deciding to make the same move.

a) Lack of Documentation: Although the SeerSuite
package [12] is shipped with a documentation folder, the
information was usually limited and fragmented. A significant

portion of technical details were not addressed. Like many
research systems, CiteSeerX has been running for years and
is mostly maintained by graduate students and postdoctoral
scholars. The depart of students and lack of documentation
make it difficult for new people to handle all cases, including
installing from scratch. Frequent duplicate communication and
extensive error-and-trials are required for new people to get
adapted to the working environment and technical details. This
motivates us to write a complete document on our project
including all components, operations, and troubleshooting,
which is an invaluable resource for future people.

b) Resource Allocation: The challenge is to find out
what kinds of products/parts we should order and how many
cores, memory, storage should be allocated to each new ma-
chine. First, an analysis of current usage should be performed
to understand if the current computing resources are sufficient,
and if not, how much more are expected. The processing power
and storage roughly scales with the size of input data. For
CiteSeerX, the document volume from our focused crawling
basically (but not definitively) determines the growth rate of
the entire dataset and further determines the hardware. After
implementing a whitelist policy [13] and using Heritrix plus an
importing middleware, our crawling rate increased from a few
thousand documents a day to about 50,000 a day. The extrac-
tion and ingestion hardware need to be upgraded accordingly
to process these documents on time. The parallelization on the
roadmap also requires multi-core servers and high memory.
The storage need to be large enough to fit the current datasets
and the growth of entire system. Table II gives out the results
of investigation. Note that those allocated resources can be
adjusted according to their actual usage (see Section IV-C.2)
which is an advantage of using virtual infrastructure.

c) System Compatibility: Like many legacy systems,
CiteSeerX was designed years ago, and has been optimized
on RHEL5. While this OS is still under support at the date
we plan to upgrade, its full support ended on January, 2013
and the regular life cycle will end on 2017. How to install
all components of the digital library based on legacy codes
on RHEL6 is a challenge. CiteSeerX web apps was mostly
written in Java, the extraction was mostly in perl, the web
service is deployed by Tomcat and it uses MySQL as the
database manager. With the newest versions of MySQL and
perl, the database and extraction are all running on RHEL6.
The load balancers are still on RHEL5 due to a compatibility
conflict of the load balancer we were running with RHEL6. We
found this by creating four temporary light weighted testing
VM servers with two for the web deployment and two for
load balancing loaded with RHEL6. The legacy system uses
heartbeat-ldirectord as a load balancer, which is provided in
the EPEL repository. We use it because it is widely used across
many users and provides many good features such as session
persistence, port grouping and standby take-over, which are
not provided by other load balancing tools, as far as we know.
We found after many attempts that heartbeat-ldirectord is
not compatible with RHEL6 so load balancing servers have
to be kept on RHEL5. Testing servers are also used when
setting up the repository cluster which includes a production
repository and two web servers. This cluster allows web servers
to perform I/O operations to files stored in the drive exported
from the repository server. Such a drive is formated to GFS but
in order to export this drive to web servers over TCP/IP, the
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global network block device (GNBD) module must be loaded
to the Linux kernel. We found that this module could not
be installed to RHEL6 kernel so both of web and repository
servers must be kept to RHEL5.

The last example is the index powered by Apache Solr.
The legacy CiteSeerX relies on Solr 1.3. The interface in the
code is not compatible with the newest Solr (v4.6.0), which
has a different index format. To avoid introducing system
complexity, we decide to comply with the old Solr by using
the existing code and postponing the Solr upgrade for future
work.

System compatibility is always a problem when upgrading
a legacy system. In our case, we learned that it is effective to
use testing machines to find out the system compatibility issues
before moving the whole units into production. In addition, our
main goal is to ensure the system is migrated and runnable,
components upgrades can be performed later. This may save
a significant amount of time.

d) Migration Plan: Our initial plan was to migrate
the system without major modifications of the architecture
(components and connections). However, the complexity of the
system makes it challenging to make the migration complete
and seamless. Here Completeness means that no data should
be lost during this migration. Seamlessness means that there
should be no or minimum down time for the service.

The VM cluster uses a different virtual IP (VIP) from the
physical cluster, the new system should be fully functional
before we change the DNS table to map the domain to the
new VIP.

We considered two possible migration plans: synchroniza-
tion vs. snapshot. Both of these plans only apply to the
frontend (red circled area in Fig. 1). The initial thought of
the synchronization plan was to first create the database,
index and repository servers in the cloud and synchroniz them
with their physical counterparts before load balancers and
web servers are migrated. Ingestion can continue, i.e., new
papers and metadata can be injected and are copied to the
VM servers using rsync. A database backup can be setup
using the master-slave replication in MySQL. New users can
continue to register and make corrections to wrong metadata.
For the incoming traffic size and ingestion rate of CiteSeerX,
the slave database is almost always synchronized with the
master database, i.e., any changes in the master database is
reflected in the slave copy in less than a few seconds. However,
a real-time synchronization is hard to be achieved for the
repository due to its large size. It takes 3–4 days for the rsync
command to finish one cycle but during the same time, the
master repository is already updated with new documents. As
a result, the repository in the cloud is always out of date. To
achieve an absolute synchronization, the ingestion has to be
halted for at least 3–4 days before we deploy the VM web
servers and switch the ingestion destination to VMs. Because
real-time synchronization cannot be really achieved, this is not
a practical plan.

Therefore, we consider a “snapshot” plan. In this plan,
the ingestion process is halted and the user registration and
correction are disabled so no new data are written into the
system. The databases are dumped and imported to the VM
server. The repository and indexes are simply copied from the

physical production server. Meanwhile, we deploy the web
servers and load balancers, configure the web servers to point
to the new data servers and test them until everything is ready
before changing the DNS table. Note that CiteSeerX is a sub-
mission critical project, so a temporary halt of ingestion is
permitted. Conceptionally, the snapshot plan is simple. The
database replication only needs to be setup once and no cron
jobs are needed to synchronize data between physical and VM
servers. We will present the detailed migration steps in the next
section.

Migrating the backend systems, i.e., text extraction and
ingestion, are less challenging because they are loosely coupled
with the other components and has little influence on frontend
production services. We only need to install the dependent
applications, copy the codes and change paths.

e) Redundancy and Data Backup: Redundancy and
data backup are crucial for a digital library especially for
legacy data which are difficult or impossible to re-gain and
large chunk of secondary data which takes too long to generate.
Several strategies are carried out to protect data against unex-
pected system failures. First, the disk array of each physical
server is built to RAID 5 to allow single disk failure. RAID 5
requires at least three physical drives, but we recommend to
reduce the number of disks when customizing a server because
a large number of disks reduces the ratio of “losable” drives to
total drives and thus increases the chance of loosing all data.
We had experiences in which two drives failed in a big array
and all data were lost. Second, the storage we got from the
storage machines is sufficient for us to create a backup server
for repository, index and database, respectively. The vSphere
hypervisor offers a feature to automatically move the data on a
failed processing server to another processing server. However,
these are all performed inside the cloud. An external backup
to high priority data is necessary. These external storage may
not be computationally powerful. For datasets less than 1TB,
a portable hard drive or a workstation can take the job. For
large datasets such as the repository, a NAS storage can be
used. The repository, database and index data are periocally
copied to the external storage. We use github, which is an
online project hosting service, to backup the CiteSeerX code.

f) Configurations: After migration, the extraction and
ingestion speed may be boosted significantly. As a result,
the existing database and index configurations may not be
proper for the scaled data input. Adjustments should be made
to allocate more memory to MySQL buffers to ensure fast
responses. This should be done before importing the database.
At least 50% of memory of the database server should be
allocated to MySQL buffers. Similarly, at least 50%–80% of
memory on the index server should be allocated to Solr. For
web servers,the memory allocated should be no less than 80%.
In most cases, the direct cause to a web server crash is not
CPU overload, but memory deficiency.

g) Security: In a physical cluster, each server has its
own public IP and may not be in the same sub-domain. After
moving to the cloud, we assign each public IP to be in the same
sub-domain, which are all behind a universal firewall. This
simplifies the firewall configuration and prohibits malicious
activities such as port scanning. We place the entire cluster
inside a Demilitarized Zone (DMZ) by applying a Linux virtual
service (LVS) on the load balancer. This disallows any access
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to cluster nodes from outside and makes the virtual IP address
the only point exposed to the internet. We configure iptables of
the load balancers to limit the number of hits per minutes per
IP address to avoid brute force attacks and excessive crawling.

h) Backward availability: After migration, we keep the
physical cluster running for at least a few months for two
reasons. First, the DNS servers around the world may not
update their tables frequently. As a result, internal network
may be the first to “know” the new mapping, while external
network may still attempt to resolve the DNS name as the
old virtual IP address. Second, for a big move to a complex
system, we should always have a “B” plan in case the new
system fails. Keeping the physical cluster running allows us
to switch the DNS table back to match the old IP in case
of any unexpected problem which causes unavailability of the
new site. Although there could be some data inconsistency,
this ensures availability.

B. Migration Steps

In this section, we present the detailed migration steps we
carried out to move CiteSeerX into a private cloud. It follows
the “snapshot” model we discussed above. All or some of the
steps are applicable to many digital libraries like ours.

1) Preparation. It is fundamental to investigate and evaluate
the existing working systems for both documentation
and hardware budget estimation. This includes but not
limited to monitoring the system vital signs (CPU and
memory usage), studying the disk space occupancy and
data growth rate to estimate the provisioned disk space,
learning to install the system, trouble shooting and docu-
menting. A comparison of different upgrade models like
above can help us to decide the most feasible model.
A system blueprint in regard to computing resources of
each VM server should be made prior to ordering any
hardware. From the blueprint, we can get a resource
allocation in Table II. Based on this table, we can de-
cide the total number of processing servers and storage
servers. Possible improvements and refinements can also
be proposed and discussed.

2) Hardware Purchase. This includes choosing the most
appropriate server models, CPUs, memories and hard
drives. We chose Intel Xeon E5649 because it had 6
cores and supported hyper-threading technique. Process-
ing servers must have high memories because VM servers
run on them. For our purposes, each processing server has
96GB of memory. Storage servers, instead, do not need
as much memory as processing servers. Because the disk
array is built in RAID 5, we try to select the maximum
capacity hard drives to minimize the total number of hard
drives.

3) Testing. This includes all kinds of testing including but
not limited to installing the CiteSeerX web application,
importing database, testing new version of Solr, and
testing load balancing software on RHEL6. The goals
are to understand system compatibility and pre-determine
any conflicts between applications and OS’s. For example,
we tried to install Piranha, which is a load balancing
tool based on RHEL6 and try to configure it to surro-
gate heartbeat-ldirectord. However, we were not able to

Fig. 3. HA cluster (green) and GNBD cluster.

use the persistency feature1 in Piranha so we chose to
stick to heartbeat-ldirectord. Testing servers leave small
footprints on the physical server. If the testing fails, it
is easy to create a new testing server within a time
scale of minutes. The testing phase seems to delay the
migration. In fact, it avoids us to play with configurations
on production and makes a clean production deployment.
Another thing we found through the database testing
is that the MySQL on the slave should have an equal
or higher version. The opposite way will fail due to
incompatibility issues.

4) Migrate Components. Components can be migrated in
the following order.
a) There are two tightly coupled clusters in the frontend:
the high availability (HA) cluster, and the GNBD
cluster (see Fig. 3). The two load balancers and two
web servers form the HA cluster. These four pro-
duction servers are first created and the CiteSeerX
web application is deployed on two web servers. The
goal of this step is to make sure that incoming traffic
is distributed across two real (web) servers and the
front page is displayed. Searching is unavailable yet.
However, we correctly configure index, repository and
database servers.

b) The GNBD cluster includes the two web servers and
the repository server. The whole repository is copied
to the VM repository server. After mounting the drive
from the repository server to the web servers as a
GNBD device, we should be able to download doc-
uments directly. Note that ingestion is still allowed so
the VM repository may not contain exactly the same
content as the physical repository.

c) The ingestion is stopped. The user registration and
correction features are also disabled. These ensure that
no new data are injected into the existing datasets. An
rsync command is run on the VM repository server
to ensure that it contains the up-to-date documents.
Because the majority of documents are already in place,
this synchronization does not take long.

d) The index VM is created and the index data is copied.
Solr is deployed within Tomcat. After this step, users
should be able to make queries from the VM web

1The persistency allows connections to be bonded to one real server in
a single session. It also enforces the load balancer to group http and https
requests from the same IP to be processed by the same real server.
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TABLE VI. CONNECTION SPEED TESTING.

Location Physical (ms) VM (ms)
University Park, PA 5.2±1.7 7.3±6.5

Beijing, China 442.4±1.5 444.5±4.2

Cape Town, South Africa 343.8±133.3 339.6±112.5

interface.
e) Meanwhile, all databases are dumped. For a 100GB
database like ours, dumping only takes a few hours. The
VM database server is created, and proper configuration
should be performed before importing the dumped file
(see Section IV-A.6). At the end of this step, the
paper summary page should be available and the digital
library search engine should be fully functional.

f) The whole VM system should be run for at least a week
and undergo some pressure tests to ensure sustainability
to the current traffic volume. Apache JMeter is one of
the tools that can be used.

g) The DNS table is updated so that the domain name is
mapped to the new VIP. This makes the new CiteSeerX
publicly visible. The user registration and corrections
features are enabled.

h) The backup servers are created in the cloud and cron
jobs are scheduled to periodically backup data.

i) The text extraction servers and staging servers are
moved to the cloud. The ingestion system is installed
and run on the repository server. The text extraction,
ingestion start again.

The component migration alone may take up to two weeks
with most of time spent on copying data and testing. There
is essentially no noticeable downtime except that the user
registration and correction are disabled for that period which
is a common action for website maintenance.

C. Post-Migration

CiteSeerX has been running on the private cloud infras-
tructure for over seven months since it was migrated. We
periodically monitor system performance by checking vital
signs such as CPU and memory usage, network traffic and
disk usage. In general, the performance is comparable or better
than the physical system. Here we share some experiences and
cases we encountered.

a) Connection Speed: After the migration was com-
pleted, we performed test connections to the CiteSeerX front
pages on the physical cluster and the cloud using Apache
Benchmarking tool (ab2) in three different locations in the
world. In each test, we submit in total 10000 requests with
100 concurrent requests. The mean connection time (in milli-
second) is tabulated in Table VI, which indicates the response
time of the cloud system is comparable to the physical one.

b) System Vital Signs: After migration, we continuously
monitor the VM production servers using the sar tool provided
in the sysstat package. The frontend servers are monitored
during the first 24 hours after the DNS table is updated.
The extraction server is monitored when multiple metadata
extraction processes are running. The values of vital signs are
tabulated in Table VII, which indicates that CPUs in most
2http://httpd.apache.org/docs/2.4/programs/ab.html

TABLE VII. SYSTEM RESOURCE USAGE AFTER MIGRATION.

Server CPU% CPU Load memory% rx1 tx1
LB < 1% < 0.01 52% 90 55
Web 2% 0.5 15% 1500 15000
DB 2% 1 60% 90 250
Rep < 1% 0.3 77% 35 400
Index 4% 0.2 10% 4 40
Ext 80% 6.5 23% 3500 50
1 Received flux (rx) and transit flux (tx) in kB/s.

of VMs servers are under-used. In particular, the CPUs of
most servers are used for less than 5%. In contrast, the text
extraction server, with 4 cores, uses 80% of CPU, and the
average CPU load is 6.5, indicating that the cores on this
server are insufficient to process the job queues. In addition,
more memories should be allocated the servers whose memory
is over 60% used, e.g., DB and Rep. Therefore, we reduce
the CPU on Web servers by 50%. The CPU usage increases
to about 10% after this change. The CPU cores on the other
web server, the database, repository and index servers are also
reduced by 50%, so that more cores are released. Lessons
learned: system resource allocations should be adjusted based
on their usage. The flexibility to adjust these resources is a
great advantage of the cloud environment. However, it is safer
to overestimate the resource usage at first to avoid system
crash.

TABLE VIII. DATA TRANSFER RATES.

From To Database dump Repository
Physical Physical 6.2MB/s 4.5MB/s
Physical VM 4.2MB/s 4.2MB/s
VM VM 5.1MB/s 3.9MB/s

c) I/O Performance on Virtual Machines: Data I/O
between VMs hosted by the same storage server can be slower
than across real servers. We did experiments by monitoring the
data transferring rates when copying data using rsync between
VMs or across VMs and physical servers (Table VIII). In the
first senario, we transfer a CiteSeerX database dump, which is
a single 64GB file. In the second senario, we do the CiteSeerX
repository backup of 3.6TB, which contains many small filers.
The measurements indicates that the data transfer across VMs
is in general slower than with physical servers by about 13%-
17%. Transferring a dataset containing a large number of files
is in general slower than a single data file. Because the sizes
of data transfers in production servers are in general small,
the relatively low transfer rate is not noticeable. However, the
effect is more obvious when we perform repository backups.
Lessons: the backup/replication servers should be hosted in
different physical servers to minimize the delays caused by a
reduced data transfer rate between virtual machines.

With the spare hardware resources in the cloud, we per-
formed a series of crawling experiments and compared the
crawling performance to a physical machine with comparable
hardware. We use Heritrix 1.14.4 to crawl starting from 1000
seed URLs selected from our whitelist [13] with a depth of two
and 50 threads. The CPU usage percentages and bandwidth
of incoming traffic for the physical and virtual servers are
shown in Fig. 4, respectively. The CPU usage percentages
are comparable but the crawler on the physical server finishes
sooner than the virtual server. The physical server finishes
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Fig. 4. Comparison of CPU usages (upper) and incoming traffic (lower)
between physical and virtual servers.

crawling in about 8 hours but the virtual server is still crawling
after 24 hours. We believe that the significant difference is
due to the relatively inefficient I/O performance in virtual
machines. Thus we exclude the crawling server from cloud
migration. Currently, we are using a separate server for focused
crawling.

d) System Expansion: The legacy system contains two
web servers. Incoming traffic is (almost) evenly distributed to
these two web servers so each server is not overloaded. This
relieves the payload of a single server, and is appropriate when
traffic volume is normal. However, if the total traffic is beyond
what a single web server can handle, a two web server model
has the potential hazard of system failure. If for any accidental
reason, one of the web servers is down, all traffic has to be
directed to the other one causing it to crash due to overloading.
This occurs about five months after migration when CiteSeerX
was heavily crawled by a small number of spiders. In addition
to applying exclusion rules in the robots.txt and limiting
connection rate in iptables, it is desirable to add the third web
server to the existing HA cluster. With the under-used VM
resources, no hardware purchase is required.

We are also planning to add the secondary database repli-
cation server. Currently, we only have one database replication
server. For research purposes, it is often desirable to use the
most updated database. Supposing we allow the users to access
the current replication database, if it crashes due to a bad
query or overload, the master database looses its only backup,
which increases the hazard for database unavailability and data
inconsistency.

Lessons learned: for a digital library in a cloud, it is al-
ways valuable to add additional storage. Multiple redundancy
and backups are necessary to ensure data availability.

V. DISCUSSION

In this section, we propose and discuss some possible
variations of the current cloud architecture for CiteSeerX. That
is, what improvements we can make in the future.

The first is to use a network storage rather than a repository
server. The obvious advantage of this approach is to save more
CPU cores, and memory. We may also be able to upgrade the
Web server OS to RHEL6. Of course, the ingestion code needs
to be modified so it can run on a separate server. However,
we must ensure that the mounting device supports “fencing”.
Fencing is the disconnection of a node from the cluster’s shared
storage when the node is detected to be failed. In the current
architecture, the GNBD device has built-in fencing. If we chose
the network storage and mounted it to web servers using iSCSI.
We either needs hardware fencing or the iSCSI target must
support SCSI-3 persistent reservations. This is an alternative
to replace the current GNBD model but further investigation is
needed to ensure the cluster components meet all SCSI fencing
requirements.

Another change to the architecture is to switch the positions
of masters and replications/backups. Currently, the master
database, repository and index servers contain the most up-to-
date data, which ensures data freshness. However, this configu-
ration has some potential hazard of causing data inconsistency
and unavailability. For example, if the master repository server
is down, the user correction still writes metadata into the
database. Normally, a new version of metadata file is generated
and written to the repository server, but this cannot be done in
this situation, causing data inconsistency between the database
and repository because the new version of metadata file does
not exist in the backup. In fact, if the repository backup is
not fully synchronized to its master (which is very likely),
all the differences between them are lost. The inconsistency
issues exist in the database servers but is less serious because
the “seconds behind master” is usually small (a few seconds).
Using the backup as the production is especially beneficial
for the repository server (assuming we are not moving to the
network storage) because the production server do not need to
run the ingestion code any more. One drawback of this solution
is that the production repository may not be up-to-date, i.e.,
some papers may not be able to be downloaded for a period
of time. However, the inconsistency time scale is short (less
than the synchronization time scale). However, this approach
prioritizes the data completeness and significantly alleviates
the workload on the production, thus reduces the chance of
data loss and inconsistencies. This approach may not apply to
the index server because during the data transfer, the index
data on the production may be fragmented. The Solr version
we use does not support replication. An upgrade to Solr 4 is
necessary to achieve a real-time backup.

There are still several bottlenecks that are obstacles for
CiteSeerX to scale up, as addressed in [14]. Migrating Cite-
SeerX into the VM is an important step in solving these
bottlenecks. One of the issues is that as the repository grows,
it takes a longer time to backup. It also increases the potential
risk of losing data. A promising solution is to use the Hadoop
Distributed File system, which uses commodity hardware to
create multiple replicas of the same document on different
machines [15]. HDFS has been under active development in
the open source community, as well as by many consulting
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companies that provide enterprise level support, i.e., Cloudera.
Under this approach, the application could deal with a single
repository, which is on top of HDFS, and the reads and writes
are handled by the file system itself.

VI. CONCLUSION

In this work, we discussed the motivation, requirements,
feasibility of migrating CiteSeerX digital library to provide an
IaaS model in a private cloud. We report the challenges we
encountered prior to and during the migration. We also report
the post-migration issues and possible solutions. CiteSeerX
represents a typical small or medium size digital library and
similar projects in terms of its size, architecture, availability,
maintenance team size, and data throughput. These digital
libraries are likely to have the same or similar challenges
when upgrading their systems. Our experience indicates that
moving to a private cloud is a cost-effective solution in
the long term compared to a public cloud model such as
Amazon EC2. The major cost of the latter is due to huge
disk storage and high outbound traffic. In addition, the private
cloud solution provides us more flexibility to extend the system
and create/delete new VM servers. The vSphere hypervisor
automatically moves failed servers to healthy ones. The major
challenges include lack of documentation, resource allocation,
system compatibility, a complete and seamless migration plan,
redundancy/data backup, configuration, security and backward
availability. The major lessons we learned through the migra-
tion are summarized below: (1) An up-to-date and complete
documentation can significantly reduce the length of learning
and investigation time; (2) For a digital library, the critical
factor which drives the system expansion is the size of the
data and its growth rate; (3) Testing machines should be used
before putting changes to the production, to save a lot of time;
(4) For a sub-mission critical project, a snapshot plan is a
better choice; (5) External backups are necessary to protect
data in the cloud; (6) New system configurations should leave
sufficient room for data up-scaling; (7) After migration, old
systems should keep running for a certain period of time if
possible to ensure service availability; (8) Web crawlers that
are hosted with other servers in the virtual environment may
have a reduced crawling rate compared to a separate dedicated
server. With the growth of data, it is necessary to project new
approaches to store and backup the repository. The HDFS is
a promising solution.
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